一、前言
在现代模具生产中,随着对塑件的雅观度及功效请求得越来越高,塑件内部结构设计得越来越复杂,模具的外形设计也日趋复杂,自由曲面所占比例不断增加,相应的模具结构也设计得越来越复杂。这些都对模具加工技巧提出了更高请求,不仅应保证高的制作精度和表面质量,而且要寻求加工表面的雅观。随着对高速加工技巧研究的不断深进,尤其在加工机床、数控系统、刀具系统、CAD/CAM软件等相干技巧不断发展的推动下,高速加工技巧已越来越多地利用于模具型腔的加工与制作中。
数控高速切削加工作为模具制作中更为重要的一项制作技巧,是集、优质、低耗于一身的制作技巧。相对于传统的切削加工,其切削速度、进给速度有了很大的提高,而且切削机理也不雷同。高速切削使切削加工产生了本质性的奔跑,其单位功率的金属切除率提高了30%~40%,切削力下降了30%,刀具的切削寿命提高了70%,留于工件的切削热大幅度下降,低阶切削振动几乎消散。随着切削速度的提高,单位时间毛坯材料的往除率增加了,切削时间减少了,加工效率提高了,从而缩短了产品的制作周期,提高了产品的市场竞争力。同时,高速加工的小量快进使切削力减少了,切屑的高速排出减少了工件的切削力和热应力变形,提高了刚性差和薄壁零件切削加工的可能性。由于切削力的下降,转速的提高使切削系统的工作频率阔别机床的低阶固有频率,而工件的表面粗糙度对低阶频率更为敏感,由此下降了表面粗糙度。在模具的高淬硬钢件(HRC45~HRC65)的加工过程中,采用高速切削可以代替电加工和磨削抛光的工序,从而避免了电更的制作和费时的电加工,大幅度减少了钳工的打磨与抛光量。对于一些市场上越来越需要的薄壁模具工件,高速铣削也可顺利完成,而且在高速铣削CNC加工中心上,模具一次装夹可完成多工步加工。
高速加工技巧对模具加工工艺产生了宏大影响,转变了传统模具加工采用的“退火→铣削加工→热处理→磨削”或“电火花加工→手工打磨、抛光”等复杂冗长的工艺流程,甚至可用高速切削加工调换本来的全部工序。高速加工技巧除可利用于淬硬模具型腔的直接加工(尤其是半精加工和精加工)外,在EDM电更加工、快速样件制作等方面也得到了广泛利用。大批生产实践表明,利用高速切削技巧可节俭模具后续加工中约80%的手工研磨时间,节俭加工本钱用度近30%,模具表面加工精度可达1 m,刀具切削效率可提高1倍。
二、高速铣削加工机床
高速切削技巧是切削加工技巧的重要发展方向之一,它随着CNC技巧、微电子技巧、新材料和新结构等基础技巧的发展而迈上更高的台阶。由于模具加工的特别性以及高速加工技巧的自身特点,对模具高速加工的相干技巧及工艺系统(加工机床、数控系统、刀具等)提出了比传统模具加工更高的请求。
1. 高稳固性的机床支撑部件
高速切削机床的床身等支撑部件应具有很好的动、静刚度,热刚度和更佳的阻尼特征。大部分机床都采用高质量、高刚性和高抗张性的灰铸铁作为支撑部件材料,有的机床公司还在底座中添加高阻尼特征的聚合物混凝土,以增加其抗振性和热稳固性,这不但可保证机床精度稳固,也可防止切削时刀具振颤。采用封闭式床身设计,整体铸造床身,对称床身结构并配有密布的加强筋等也是提高机床稳固性的重要措施。一些机床公司的研发部分在设计过程中,还采用模态分析和有限元结构盘算等,优化了结构,使机床支撑部件更加稳固可靠。
2. 机床主轴
高速机床的主轴性能是实现高速切削加工的重要条件。高速切削机床主轴的转速范畴为10000~100000m/min,主轴功率大于15kW。通过主轴压缩空气或冷却系统把持刀柄和主轴间的轴向间隙不大于0.005mm。还请求主轴具有快速升速、在指定地位快速准停的性能(即具有更高的角加减速度),因此高速主轴常采用液体静承式、空气静承式、热压氮化硅(Si3N4)陶瓷轴承磁悬浮轴承式等结构情势。润滑多采用油气润滑、喷射润滑等技巧。主轴冷却一般采用主轴内部水冷或气冷。
3. 机床驱动系统
为满足模具高速加工的需要,高速加工机床的驱动系统应具有下列特征:
(1) 高的进给速度。研究表明,对于小直径刀具,提高转速和每齿进给量有利于下降刀具磨损。目前常用的进给速度范畴为20~30m/min,如采用大导程滚珠丝杠传动,进给速度可达60m/min;采用直线电机则可使进给速度达到120m/min。
(2)高的加速度。对三维复杂曲面廓形的高速加工请求驱动系统具有良好的加速度特征,请求供给高速进给的驱动器(快进速度约40m/min,3D轮廓加工速度为10m/min),能够供给0.4m/s2到10m/s2的加速度和减速度。
机床制作商大多采用全闭环地位伺服把持的小导程、大尺寸、高质量的滚珠丝杠或大导程多头丝杠。随着电机技巧的发展,的直线电动机已经问世,并成功利用于CNC机床。的直线电动机驱动使CNC机床不再有质量惯性、超前、滞后和振动等标题,加快了伺服响应速度,提高了伺服把持精度和机床加工精度。
4. 数控系统
的数控系统是保证模具复杂曲面高速加工质量和效率的关键因素,模具高速切削加工对数控系统的基础请求为:
(1) 高速的数字把持回路(Digital control loop),包含:32位或64位并行处理器及1.5Gb以上的硬盘;更短的直线电机采样时间
(2)速度和加速度的前馈把持(Feed forward control);数字驱动系统的爬行把持(Jerk control)。
(3) 的插补方法( 基于NURBS的样条插补),以获得良好的表面质量、准确的尺寸和高的几何精度。
(4)预处理(Look-ahead)功效。请求具有大容量缓冲存放器,可预先浏览和检查多个程序段(如DMG机床可多达500个程序段,Simens系统可达1000~2000个程序段),以便在被加工表面外形(曲率)产生变更时可及时采用转变进给速度等措施以避免过切等。
(5)误差补偿功效,包含因直线电机、主轴等发热导致的热误差补偿、象限误差补偿、丈量系统误差补偿等功效。 此外,模具高速切削加工对数据传输速度的请求也很高。
(6) 传统的数据接口, 如RS232串行口的传输速度为19.2kb,而很多的加工中心均已采用以太局域网(Ethernet)进行数据传输,速度可达200kb。
5. 冷却润滑
高速加工采用带涂层的硬质合金刀具,在高速、高温的情况下不用切削液,切削效率更高。这是由于:铣削主轴高速旋转,切削液若要达到切削区,首先要克服更大的离心力;即使它克服了离心力进进切削区,也可能由于切削区的高温而立即蒸发,冷却后果很小甚至没有;同时切削液会使刀具刃部的温度激烈变更,轻易导致裂纹的产生,所以要采用油/气冷却润滑的干式切削方法。这种方法可以用高压气体敏捷吹走切削区产生的切削,从而将大批的切削热带走,同时经雾化的润滑油可以在刀具刃部和工件表面形成一层更薄的微观保护膜,可有效地延伸刀具寿命并提高零件的表面质量。
三、高速切削加工的刀柄和刀具
由于高速切削加工时离心力和振动的影响,请求刀具具有很高的几何精度和装夹重复定位精度以及很高的刚度和高速动平衡的安全可靠性。由于高速切削加工时较大的离心力和振动等特点,传统的7:24锥度刀柄系统在进行高速切削时表现出明显的刚性不足、重复定位精度不高、轴向尺寸不稳固等缺点,主轴的膨胀引起刀具及夹紧机构质心的偏离,影响刀具的动平衡才能。目前利用较多的是HSK高速刀柄和国外现今风行的热胀冷缩紧固式刀柄。热胀冷缩紧固式刀柄有加热系统,刀柄一般都采用锥部与主轴端面同时接触,其刚性较好,但是刀具可换性较差,一个刀柄只能安装一种连接直径的刀具。由于此类加热系统比拟昂贵,在初期时采用 HSK类的刀柄系统即可。当企业的高速机床数目超过3台以上时,采用热胀冷缩紧固式刀柄比拟合适。
刀具是高速切削加工中更活泼重要的因素之一,它直接影响着加工效率、制作本钱和产品的加工精度。刀具在高速加工过程中要蒙受高温、高压、摩擦、冲击和振动等载荷,高速切削刀具应具有良好的机械性能和热稳固性,即具有良好的抗冲击、耐磨损和抗热疲惫的特征。高速切削加工的刀具技巧发展速度很快,利用较多的如金刚石(PCD)、立方氮化硼(CBN)、陶瓷刀具、涂层硬质合金、(碳)氮化钛硬质合金TIC(N)等。
在加工铸铁和合金钢的切削刀具中,硬质合金是更常用的刀具材料。硬质合金刀具耐磨性好,但硬度比立方氮化硼和陶瓷低。为提高硬度和表面光洁度,采用刀具涂层技巧,涂层材料为氮化钛(TiN)、氮化铝钛(TiALN)等。涂层技巧使涂层由单一涂层发展为多层、多种涂层材料的涂层,已成为提高高速切削才能的关键技巧之一。直径在10~40mm范畴内,且有碳氮化钛涂层的硬质合金刀片能够加工洛氏硬度小于42的材料,而氮化钛铝涂层的刀具能够加工洛氏硬度为42 甚至更高的材料。高速切削钢材时,刀具材料应选用热硬性和疲惫强度高的P类硬质合金、涂层硬质合金、立方氮化硼(CBN)与CBN复合刀具材料(WBN)等。切削铸铁,应选用细晶粒的K类硬质合金进行粗加工,选用复合氮化硅陶瓷或聚晶立方氮化硼(PCNB)复合刀具进行精加工。精密加工有色金属或非金属材料时,应选用聚晶金刚石PCD或CVD金刚石涂层刀具。选择切削参数时,针对圆刀片和球头铣刀,应留心有效直径的概念。高速铣削刀具应按动平衡设计制作。刀具的前角比惯例刀具的前角要小,后角略大。主副切削刃连接处应修圆或导角,来增大刀尖角,防止刀尖处热磨损。应加大刀尖四周的切削刃长度和刀具材料体积,提高刀具刚性。在保证安全和满足加工请求的条件下,刀具悬伸尽可能短,刀体中心韧性要好。刀柄要比刀具直径粗壮,连接柄呈倒锥状,以增加其刚性。尽量在刀具及刀具系统中心留有冷却液孔。球头立铣刀要考虑有效切削长度,刃口要尽量短,两螺旋槽球头立铣刀通常用于粗铣复杂曲面,四螺旋槽球头立铣刀通常用于精铣复杂曲面。
四、模具高速加工工艺及策略
高速加工包含以往除余量为目标的粗加工、残留粗加工,以及以获取高质量的加工表面及细微结构为目标的半精加工、精加工和镜面加工等。
1. 粗加工
模具粗加工的重要目标是寻求单位时间内的材料往除率,并为半精加工准备工件的几何轮廓。高速加工中的粗加工所应采用的工艺计划是高切削速度、高进给率和小切削用量的组合。等高加工方法是众多CAM软件广泛采用的一种加工方法。利用较多的是螺旋等高和等Z轴等高两种方法,也就是在加工区域仅一次进刀,在不抬刀的情况下天生持续光滑的刀具路径,进、退刀方法采用圆弧切进、切出。螺旋等高方法的特点是,没有等高层之间的刀路移动,可避免频繁抬刀、进刀对零件表面质量的影响及机械设备不必要的耗费。对陡峭和平坦区域分辨处理,盘算合适等高及合适应用类似3D偏置的区域,并且可以应用螺旋方法,在很少抬刀的情况下天生优化的刀具路径,获得更好的表面质量。在高速加工中,必定要采用圆弧切进、切出连接方法,以及拐角处圆弧过渡,避免忽然转变刀具进给方向,禁止应用直接下刀的连接方法,避免将刀具埋进工件。加工模具型腔时,应避免刀具垂直插进工件,而应采用倾斜下刀方法(常用倾斜角为20°~30°),更好采用螺旋式下刀以下降刀具载荷。加工模具型芯时,应尽量先从工件外部下刀然后程度切进工件。刀具切进、切出工件时应尽可能采用倾斜式(或圆弧式)切进、切出,避免垂直切进、切出。采用攀爬式切削可下降切削热,减小刀具受力和加工硬化程度,提高加工质量。
2. 半精加工
模具半精加工的重要目标是使工件轮廓外形平整,表面精加工余量均匀,这对于工具钢模具尤为重要,由于它将影响精加工时刀具切削层面积的变更及刀具载荷的变更,从而影响切削过程的稳固性及精加工表面质量。
粗加工是基于体积模型,精加工则是基于面模型。以前开发的CAD/CAM系统对零件的几何描写是不持续的,由于没有描写粗加工后、精加工前加工模型的中间信息,故粗加工表面的剩余加工余量散布及更大剩余加工余量均是未知的。因此应对半精加工策略进行优化以保证半精加工后工件表面具有均匀的剩余加工余量。优化过程包含:粗加工后轮廓的盘算、更大剩余加工余量的盘算、更大答应加工余量的断定、对剩余加工余量大于更大答应加工余量的型面分区(如凹槽、拐角等过渡半径小于粗加工刀具半径的区域)以及半精加工时刀心轨迹的盘算等。
现有的模具高速加工C A D /CAM软件大都具备剩余加工余量分析功效,并能根据剩余加工余量的大小及散布情况采用公平的半精加工策略。如MasterCAM软件供给了束状铣削 (Pencil milling)和剩余铣削(Rest milling)等方法来清除粗加工后剩余加工余量较大的角落以保证后续工序均匀的加工余量。
3. 精加工
模具的高速精加工策略取决于刀具与工件的接触点,而刀具与工件的接触点随着加工表面的曲面斜率和刀具有效半径的变更而变更。对于由多个曲面组合而成的复杂曲面加工,应尽可能在一个工序中进行持续加工,而不是对各个曲面分辨进行加工,以减少抬刀、下刀的次数。然而,由于加工中表面斜率的变更,假如只定义加工的侧吃刀量(Step over),就可能造成在斜率不同的表面上实际步距不均匀,从而影响加工质量。
一般情况下,精加工曲面的曲率半径应大于刀具半径的1.5倍,以避免进给方向的忽然转变。在模具的高速精加工中,在每次切进、切出工件时,进给方向的转变应尽量采用圆弧或曲线转接,避免采用直线转接,以保持切削过程的安稳性。
高速精加工策略包含三维偏置、等高精加工和更佳等高精加工、螺旋等高精加工等策略。这些策略可保证切削过程光顺、稳固,确保能快速切除工件上的材料,得到高精度、光滑的切削表面。精加工的基础请求是要获得很高的精度、光滑的零件表面质量,轻松实现精致区域的加工,如小的圆角、沟槽等。对很多外形来说,精加工更有效的策略是应用三维螺旋策略。应用这种策略可避免应用平行策略和偏置精加工策略中会呈现的频繁的方向转变,从而提高加工速度,减少刀具磨损。这个策略可以在很少抬刀的情况下天生持续光滑的刀具路径。这种加工技巧综合了螺旋加工和等高加工策略的长处,刀具负荷更稳固,提刀次数更少,可缩短加工时间,减小刀具损坏机率。它还可以改良加工表面质量,更大限地减小精加工后手工打磨的需要。在很多场合需要将陡峭区域的等高精加工和平坦区域三维等距精加工方法联合起来应用。
数控编程也要考虑几何设计和工艺安排,在应用CAM系统进行高速加工数控编程时,除刀具和加工参数根据具体情况选择外,加工方法的选择和采用的编程策略就成为了关键。一名出色的应用CAD/CAM工作站的编程工程师应当同时也是一名合格的设计与工艺师,他应对零件的几何结构有一个准确的懂得,具备对于幻想工序安排以及公平刀具轨迹设计的知识和概念。
五、高速切削数控编程
高速铣削加工对数控编程系统的请求越来越高,价格昂贵的高速加工设备对软件提出了更高的安全性和有效性请求。高速切削有着比传统切削特别的工艺请求,除了要有高速切削机床和高速切削刀具外,具有合适的CAM编程软件也是至关重要的。数控加工的数控指令包含了所有的工艺过程,一个优良的高速加工CAM编程系统应具有很高的盘算速度、较强的插补功效、全程主动过切检查及处理才能、主动刀柄与夹具干涉检查、进给率优化处理功效、待加工轨迹监控功效、刀具轨迹编纂优化功效和加工残余分析功效等。高速切削编程首先要留心加工方法的安全性和有效性;其次,要尽一切可能保证刀具轨迹光滑安稳,这会直接影响加工质量和机床主轴等零件的寿命;更后,要尽量使刀具载荷均匀,这会直接影响刀具的寿命。
1. CAM系统应具有很高的盘算编程速度
高速加工中采用非常小的进给量与切深,其NC程序比对传统数控加工程序要大得多,因而请求软件盘算速度要快,以节俭刀具轨迹编纂和优化编程的时间。
2. 全程主动防过切处理才能及主动刀柄干涉检查才能
高速加工以传统加工近10倍的切削速度进行加工,一旦产生过切对机床、产品和刀具将产生灾害性的成果,所以请求其CAM系统必需具有全程主动防过切处理的才能及主动刀柄与夹具干涉检查、绕避功效。系统能够主动提示更短夹持刀具长度,并主动进行刀具干涉检查。
3. 丰富的高速切削刀具轨迹策略
高速加工对加工工艺走刀方法比传统方法有着特别请求,为了能够确保更大的切削效率,又保证在高速切削时加工的安全性,CAM系统应能根据加工瞬时余量的大小主动对进给率进行优化处理,能主动进行刀具轨迹编纂优化、加工残余分析并看待加工轨迹监控,以确保高速加工刀具受力状态的安稳性,提高刀具的应用寿命。
采用高速加工设备之后,对编程职员的需求量将会增加,因高速加工工艺请求严格,过切保护更加重要,故需花多的时间对NC指令进行仿真检验。一般情况下,高速加工编程时间比一般加工编程时间要长得多。为了保证高速加工设备足够的应用率,需配置更多的CAM职员。现有的CAM软件,如PowerMILL、 MasterCAM、UnigraphicsNX、Cimatron等都供给了相干功效的高速铣削刀具轨迹策略。
六、结束语
高速切削技巧是切削加工技巧的重要发展方向之一,目前重要利用于汽车产业和模具行业,尤其是在加工复杂曲面的范畴、工件本身或刀具系统刚性请求较高的加工范畴等,是多种加工技巧的集成,其、高质量为人们所推重。它不仅涉及到高速加工工艺,而且还包含高速加工机床、数控系统、高速切削刀具及 CAD/CAM技巧等。模具高速加工技巧目前已在发达国家的模具制作业中广泛利用,而在我国的利用范畴及利用程度仍有待提高,由于其具有传统加工无可相比的上风,仍将是今后加工技巧必定的发展方向。
模具高速铣削加工技巧概述
上一页:模具加工变形标题处理方法
下一页:我国塑料模具行业